UAVs in an Australian Maritime Environment

Marc Ware Lieutenant Commander RAN 14 July 2003

LCDR Marc Ware BSc BAvn MSc

- 23 years service in the RAN
- 2600 hours total flying experience

- 1400 hours Seahawk experience
- Capability Development experience
- Flight Trials Officer at AMAFTU

Aim

Remind the audience of my 2002 proposal for a Concept of operations for Maritime UAVs (MUAVs) in the Australian environment

Update audience on achievements in this area since last

year

Introduction

Concept of Operations that:

- ✓ Satisfies a Capability Gap
- ✓ Cost Effective
- ✓ Fits into the current and planned RAN Force structure

Recognises the constraints of operating from sea:

- ✓ Space
- ✓ Personnel
- ✓ Cost
- ✓ Launch and Recovery
- Augmentation of existing helicopter fleets

Doctrine

DCP

Plan Blue

Maritime Doctrine

White Paper

Capability Gap

Manpower

Manpower is a significant cost driver

RAN will continue to operate current helicopters until 2025

Most cost effective embarked UAV solution is to utilise existing aircrew

Communications

Increasing requirement for satellite bandwidth

 Alternative approach might be to only send snapshots of imagery

Improved Data Modem (IDM) offers a UHF alternative

Launch & Recovery

Expense and complexity of autonomous landing systems

An alternative approach is to carry the UAV with the helicopter

Command & Control

Technology already exists to command and control very small UAVs

- Sensors can now provide useful imagery in packages no heavier than a few pounds.
- Extendor program has proved that imagery transfer using standard UHF radios is possible using IDM.
- Hunter Killer Stand-off Team program has proved the concept of teaming a helicopter with a UAV.

Tiny Tiger

UAV(Medium Size - External Carriage)

 UAV of Penguin Missile, Mk46 or MALD Size

- Rejected
 - Cost
 - Provocative
 - Reduction in helicopter external carrying capacity

3 ft by 5 inches diameter

Weight 39 lbs

UAV (Small Size – Internal Carriage)

Pointer

(9ft wingspan, 9 lb mtow, 1hr endurance)

Mite

(1ft wingspan, 4 lb mtow, 0.5hr endurance)

Dragon Eye

(4ft wingspan, 5 lb mtow, 1hr endurance)

Conceptual Design

Deployment Stages

MUAV in Free Flight

Concept of Operations

Conclusion

CONOPS proposes control of the UAV from the Maritime helicopter

Makes maximum use of current personnel & equipment

No requirement for satellite links

Conclusion (2)

Small demand on ship space

Reduced complexity on launch & recovery

Reduces the risk to the crew while better complementing the existing helicopter fleet

Is technically feasible

International progress since 2002

Number of flights of the Finder from a Predator UAV

HSKT have launched a vehicle from a 5 inch diameter tube

Local progress since 2002

- Codarra Advanced Systems
 - Avatar UAV

Aerosonde UAV

Local progress since 2002

Sydney University

Wasp mini-UAV Launch Sequence from Sonobuoy Launch Container

By 2003 Advanced Aircraft Design Student Team led by Dr KC Wong

School of Aerospace, Mechanical and Mechatronic Engineering

ADF Progress since 2002

- UAV Roadmap
- JP129 OCD release
- SEA4000 interest in UAV capability

Recommendations

Trial to test both control and imagery transfer between a Seahawk and UAV

DSTO and Industry develop a Tiny Tiger prototype, perhaps through a Concept Technology Demonstrator (CTD) Project

Consideration be given to a collaborative project

UAVs in an Australian Maritime Environment

Marc Ware Lieutenant Commander RAN 14 July 2003

